Аристотель свидетельствует, что пифагорейцы считали числа «причиной и началом» вещей, а отношения чисел — основой всех отношений в мире. Числа придают миру упорядоченность и делают его космосом. Такое отношение к числу было принято Платоном, а позже неоплатониками. Платон при помощи чисел различает подлинное бытие (то, что существует и мыслится само по себе) и неподлинное бытие (то, что существует лишь благодаря другому и познаётся только в отношении).
- Более общими (но всё ещё счётными) классами чисел, чем алгебраические, являются периоды, вычислимые и арифметические числа (где каждый последующий класс шире, чем предыдущий).
- Число — одно из основных понятий математики, возникшее впервые в связи с потребностями счета предметов и совершенствовавшееся затем по мере развития математических знаний.
- Используется для подсчета количества, маркировки, измерения величин и т.д.
Число Пи
Кватернионы представляющие собой разновидность гиперкомплексных чисел. Кватернионы в отличие от комплексных чисел не коммутативны относительно умножения. Однако это число появляется в различных математических результатах, в которых ни о какой окружности речи не идёт.
Что такое плоскость: определение, свойства, уравнения
Английский математик Август де Морган назвал как-то Пи «…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу». Магические и мистические свойства чисел волновали людей еще в глубокой древности. Хотим мы этого или нет, но где-то глубоко в нас сидит какая-то симпатия к одним числам и осторожность, а порой и совсем неприятные чувства к другим. Число это одно из основных понятий математики, позволяющее выразить результаты счета или измерения.
С развитием науки и математики в частности, была придумана десятичная система счисления, содержащая цифры 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, которые называются арабскими. К слову, данная система применяется по сей и является самой распространенной. Письменными знаками для обозначения чисел служат цифры, а также символы математических операций. Все дальнейшие расширения понятия числа уже не были более вызваны потребностями счета и измерения, а явились следствием развития науки. Первым из них было введение отрицательных чисел, обусловленное развитием алгебры.
Иерархия чисел
- Неоплатоники, особенно Ямвлих и Прокл, почитали числа столь высоко, что даже не считали их сущими — устроение мира исходит от числа, хотя и не непосредственно.
- В Европе отрицательные числа ввел в употребление в XVII в.
- В случае, если в результате выполнения операции полученное число должно занять больше разрядов, чем отводится в ЭВМ, результат вычислений становится неверным — происходит так называемое арифметическое переполнение.
- О последних свидетельствуют вавилонские клинописные обозначения или знаки для записи чисел в кириллической системе счисления.
- Число – это количественная характеристика чего-либо.
Для представления натурального числа в памяти компьютера, оно обычно переводится в двоичную систему счисления. Для представления отрицательных чисел часто используется дополнительный код числа, который получается путём прибавления единицы к инвертированному представлению модуля данного отрицательного числа в двоичной системе счисления. Комплексные числа , являющиеся расширением множества действительных чисел.
История чисел
Возможности воспроизведения чисел значительно увеличились с появлением письменности. О последних свидетельствуют вавилонские клинописные обозначения или знаки для записи чисел в кириллической системе счисления. Когда в Индии появилась позиционная система счисления, позволяющая записать любое натуральное число при помощи десяти знаков (цифр), это стало большим достижением человека. От наиболее простых натуральных, известных каждому ребёнку, до весьма сложных и специфичных комплексных, изучаемых в специальных разделах математики, физики.Ниже приводятся определения различных чисел. Перед этим важно отметить, что все числа определённого вида образуют в совокупности множество таких чисел.
Например, цены на продукты в магазине, массу и габариты предметов вокруг нас, возраст людей, расстояние между городами и т. Но начинается все именно со счета, точнее с устного счета.Без чисел было бы весьма затруднительно ввести градацию чего-либо, сложно было бы производить сравнения. Например, если бы не было меры массы тела в граммах, выражающейся конкретным числом грамм, то люди бы описывали предметы только как легкие, более легкие, тяжелые, очень тяжелые, чрезвычайно тяжелые и т. Это бы значительно затруднило общий прогресс и развитие человеческой цивилизации. Кант считал, что явление познано тогда, когда оно сконструировано в соответствии с априорными понятиями — формальными условиями опыта. Число задаёт конкретный принцип или схему конструирования.
В «Началах» Евклид устанавливает безграничную продолжаемость ряда простых чисел. Здесь же Евклид определяет число как «множество, составленное из единиц». Архимед в книге «Псаммит» описывает принципы для обозначения сколь угодно больших чисел. Число́ — основное понятие математики, используемое для количественной характеристики, сравнения и нумерации объектов. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа с развитием науки значительно расширилось.
Понятие натурального числа кажется таким простым и естественным, что в науке долгое время не ставился вопрос об определении его в терминах каких-либо простых понятий. При записи чисел используются различные способы (последовательности символов- цифр), т.е. Действительные (вещественные) числа представляют собой расширение множества рациональных чисел, замкнутое относительно некоторых (важных для математического анализа) операций предельного перехода. Его можно рассматривать как пополнение поля рациональных чисел при помощи нормы, являющейся обычной абсолютной величины. Кроме рациональных чисел, включает множество иррациональных чисел , не представимых в виде отношения целых.
Первым обобщением натуральных чисел были дробные числа, возникшие в связи с потребностью производить измерения какой-либо величины, что заключается в сравнении ее с какой-либо другой величиной — эталоном. С введением понятий сложения, вычитания, умножения и деления начинает развиваться наука о числах и действиях над ними — арифметика. Изучение глубоких закономерностей в натуральном ряду чисел продолжается до настоящего времени и составляет теорию чисел.
В Европе отрицательные числа ввел в употребление в XVII в. Изучение понятия непрерывности в работах немецких математиков Дедекинда, Кантора, Вейерштрасса привело к дальнейшему уточнению понятия числа и его свойств. Развитие теории алгебраических уравнений привело (XVIII в.) к понятию комплексного числа.
Оно придаёт меру и определённость вещам и делает их причастными бытию. Благодаря числу вещи могут быть подвергнуты пересчёту и поэтому они могут быть мыслимы, а не только ощущаемы. Неоплатоники, особенно Ямвлих и Прокл, почитали числа столь высоко, что даже не считали их сущими — устроение мира исходит от числа, хотя и не непосредственно. Числа сверхсущны, пребывают выше Ума, и недоступны знанию. Неоплатоники различают божественные числа (прямую эманацию Единого) и математические числа (составленные из единиц). Гаусса, комплексные числа были признаны математиками и начали играть существенную роль не только в алгебре, но и в математическом анализе.
Значение комплексных чисел особенно возросло в XIX веке в связи с развитием теории функций комплексного переменного. С развитием алгебры возникла необходимость введения комплексных чисел, хотя недоверие к закономерности пользования ими долго сохранялось и отразилось в сохранившемся до сих пор термине «мнимое». Уже у итальянских математиков XVI века (Дж. Кардано, Р. Бомбелли), в связи с открытием алгебраического решения уравнений третьей и четвёртой степеней, возникла идея комплексного числа. Дело в том, что даже решение квадратного уравнения, в том случае, если уравнение не имеет действительных корней, приводит к действию извлечения квадратного корня из отрицательного числа.
Магические свойства чисел
В таких системах возможны операции и над иррациональными, и над трансцендентными числами без потери точности. Такое представление обычно требует большего объема памяти, чем приближенное представление рациональными числами. Практически важным обобщением числовой системы является интервальная арифметика.
В связи с этим в ЭВМ мы имеем дело не с числами в математическом смысле, а с некоторыми их представлениями, или приближениями. Для представления чисел отводится некоторое определенное число ячеек (обычно двоичных, бит – от BInary digiT) памяти. В случае, если в результате выполнения операции полученное число должно занять больше разрядов, чем отводится в ЭВМ, происходит так называемое переполнение, и должна быть зафиксирована число фибоначчи это ошибка.
Такие именованные числовые ряды были очень короткими и завершались неиндивидуализированным понятием «много». Разные слова для большого количества предметов разного рода существуют и сейчас, такие, как «толпа», «стадо», «куча». Примитивный счёт предметов заключался «в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона», которым у большинства народов являлись пальцы («счёт на пальцах»). Это подтверждается лингвистическим анализом названий первых чисел. На этой ступени понятие числа становится не зависящим от качества считаемых объектов.
Со временем начинают применяться действия над числами, сначала сложение и вычитание, позже умножение и деление. Когда стали разрабатывать правила действий, изучать их свойства и создавать методы решения задач, тогда начинает развиваться арифметика — наука о числах. Тогда появляется раздел математики, который сейчас называется теория чисел. Только к середине XIX века под влиянием развития математического анализа и аксиоматического метода в математике, назрела необходимость обоснования понятия количественного натурального числа. Введение в употребление дробных чисел было вызвано потребностью производить измерения и стало исторически первым расширением понятия числа.