Значение слова ЧИСЛО Что такое ЧИСЛО?

Любой объект является исчислимым и измеряемым, потому что он сконструирован по схеме числа (или величины). Поэтому всякое явление может рассматриваться математикой. Разум воспринимает природу подчинённой числовым закономерностям именно потому, что сам строит её в соответствии с числовыми закономерностями. Так объясняется возможность применения математики в изучении природы. Понятие числа возникло в глубокой древности из практической потребности людей и усложнялось в процессе развития человечества. Область человеческой деятельности расширялась и соответственно, возрастала потребность в количественном описании и исследовании.

Основные классы чисел

Понятие числа служит исходным для многих математических теорий. Числа находят широкое применение и в физике, механике, астрономии, химии и многих других науках. В системах компьютерной алгебры, Питоне и некоторых других языках программирования числа представлены в виде объектов, над которыми определены операции сложения, умножения, возведения в степень и обратные к ним.

Казалось, что задача, приводящаяся к решению такого квадратного уравнения, не имеет решения. Необходимость введения отрицательных чисел была связана с развитием алгебры как науки, дающей общие способы решения арифметических задач, независимо от их конкретного содержания и исходных числовых данных. Необходимость введения в алгебру отрицательного числа возникает уже при решении задач, сводящихся к линейным уравнениям с одним неизвестным. Отрицательные числа систематически применялись при решении задач ещё в VI—XI веках в Индии и истолковывались примерно так же, как это делается в настоящее время.

Комплексные числа используются при решении задач квантовой механики, гидродинамики, теории упругости и пр. Комплексные числа подразделяются на алгебраические и трансцендентные. При этом каждое действительное трансцендентное является иррациональным, а каждое рациональное число — действительным алгебраическим. Более общими (но всё ещё счётными) классами чисел, чем алгебраические, являются периоды, вычислимые и арифметические числа (где каждый последующий класс шире, чем предыдущий).

  • Аристотель свидетельствует, что пифагорейцы считали числа «причиной и началом» вещей, а отношения чисел — основой всех отношений в мире.
  • В таких системах возможны операции и над иррациональными, и над трансцендентными числами без потери точности.
  • Осознание бесконечности натурального ряда явилось следующим важным шагом в развитии понятия натурального числа.
  • К слову, данная система применяется по сей и является самой распространенной.

История чисел

Число — одно из основных понятий математики, возникшее впервые в связи с потребностями счета предметов и совершенствовавшееся затем по мере развития математических знаний. Уже в трудах античных ученых было установлено, что ряд натуральных чисел бесконечен (III в. до н. э.). Проблемы бесконечности натурального ряда, ряда простых чисел и построение названий для сколь угодно больших чисел обсуждаются в знаменитом произведении Евклида «Начала» и в книге Архимеда «Об исчислении песка» («Псаммит»). Представление чисел в памяти компьютера имеет ограничения, связанные с ограниченностью объёма памяти, выделяемого под числа. Даже натуральные числа представляют собой математическую идеализацию, ряд натуральных чисел бесконечен. На объем же памяти ЭВМ накладываются физические ограничения.

Отличия чисел от цифр

Действительные числа обычно представляются в виде чисел с плавающей запятой. При этом лишь некоторые из действительных чисел могут быть представлены в памяти компьютера точным значением, в то время как остальные числа представляются приближёнными значениями. В повседневной жизни, в математике, в точных науках почти повсеместно используются числа. При помощи чисел происходит измерение различных величин. Числа помогают количественно характеризовать различные свойства предметов.

Раньше для обозначений чисел использовались черточки, однако для записи больших значений такой способ был крайне неудобен. Представьте, сколько времени бы заняло рисование черточек для записи, к примеру, числа 745. В данной публикации мы рассмотрим определение числа, перечислим его основные виды и отличия от цифры, разберем принцип образования чисел и их произношение. Представленная информация сопровождается примерами для лучшего понимания.

Число Пи

В математике для множеств существует величина мощности множества, аналогичная количеству элементов в нём. Развитие этого представления для бесконечных множеств привело к дальнейшему обобщению понятия числа. Сейчас говорят о кардинальных числах, которые описывают множества из любого числа элементов — конечного или бесконечного. P-адические числа можно рассматривать как элементы поля, являющегося пополнением поля рациональных чисел при помощи т. P-адического нормирования, аналогично тому, как поле действительных чисел определяется как его пополнение при помощи обычной абсолютной величины.

Для сокращения записи чисел великанов (больших чисел) давно используется система величин, в которой числа великаны имеют свои названия и записи в двух вариантах. Математика должна быть точной и не допускать двусмысленности. Цифры это обозначения чисел и из них могут состоять только другие обозначения чисел, но никак не сами числа. Число – это количественная характеристика чего-либо. Используется для подсчета количества, маркировки, измерения величин и т.д.

  • Комплексные числа используются при решении задач квантовой механики, гидродинамики, теории упругости и пр.
  • Числа сверхсущны, пребывают выше Ума, и недоступны знанию.
  • Об этом есть упоминания в трудах Евклида и Архимеда и других памятниках античной математики III века до н.
  • Уже у итальянских математиков XVI века (Дж. Кардано, Р. Бомбелли), в связи с открытием алгебраического решения уравнений третьей и четвёртой степеней, возникла идея комплексного числа.

Иерархия чисел

Письменными знаками (символами) для записи чисел служат цифры. Считать предметы человек умел ещё в глубокой древности, тогда и возникло понятие натурального числа. На первых ступенях развития понятие отвлечённого числа отсутствовало. В те времена человек мог оценивать количества однородных предметов, называемых одним словом, например «три человека», «три топора». При этом использовались разные слова «один» «два», «три» для понятий «один человек», «два человека», «три человека» и «один топор», «два топора», «три топора». Это показывает анализ языков первобытных народностей.

Основные числовые множества

Целые числа, получаемые объединением натуральных чисел с множеством отрицательных чисел и нулём, обозначаются . Целые числа замкнуты относительно сложения, вычитания и умножения (но не деления). Натуральные числа, получаемые при число фибоначчи это естественном счёте; множество натуральных чисел обозначается . (иногда к множеству натуральных чисел также относят ноль, то есть ). Натуральные числа замкнуты относительно сложения и умножения (но не вычитания или деления). Сложение и умножение натуральных чисел коммутативны и ассоциативны, а умножение натуральных чисел дистрибутивно относительно сложения и вычитания.

Обоснование понятия натурального числа стало необходимым лишь в середине XIX в. В связи с развитием аксиоматического метода в математике и разработкой основ математического анализа. В работах немецкого математика Кантора на основании понятия множеств, их равномощности, т. Сопоставимости элементов одного множества элементам другого. Число предметов в совокупности, число элементов во множестве определяется как то общее, что имеет данная совокупность и всякая другая ей равномощная. Другое понятие натурального числа было дано итальянским математиком Пеано на основании сформулированных им аксиом.

Leave a comment

Your email address will not be published. Required fields are marked *